Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 445: 138704, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401308

RESUMO

In this study, the influence of cooling rate on the freeze-thaw stability, rheological and tribological properties of interfacial crystalized oleogel emulsion was investigated. Results showed that slower cooling rate could promote formation of larger crystals and stronger network in oleogels. Additionally, oleogel emulsions showed higher freeze-thaw stability than those stabilized solely by emulsifiers. The slower cooling rate resulted in larger crystals adsorbed at the droplet surface. This led to greater steric hindrance that prevented the migration of oil droplets with higher resistance to disruption by ice crystals. The rheological and tribological measurements suggested that with appropriate amount of crystals, the tribological properties were better maintained for emulsions prepared at slow cooling rate after freeze-thaw treatment. This strategy greatly enriched oleogel emulsion formulations and provided important clues for potential applications in food products involved with freeze-thaw treatment.


Assuntos
Compostos Orgânicos , Emulsões/química , Congelamento , Transição de Fase , Compostos Orgânicos/química
2.
J Agric Food Chem ; 71(49): 19581-19591, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038344

RESUMO

Piperine (PIP), a pungent alkaloid found in black pepper, has various pharmacological effects by activating the transient receptor potential vanilloid 1 (TRPV1) receptor. In this study, the regulating effect of PIP on glucose metabolism and the underlying mechanism were examined using an insulin-resistant cell model. Results showed that PIP alleviated glucosamine (GlcN)-induced glucose metabolism disorder (from 59.19 ± 1.90 to 88.36 ± 6.57%), restored cellular redox balance (from 148.43 ± 3.52 to 110.47 ± 3.52%), improved mitochondrial function (from 63.76 ± 4.87 to 85.98 ± 5.12%), and mitigated circadian disruption in HepG2 cells via the mediation of circadian clock gene Bmal1. After the knockdown of the Trpv1 gene, the modulating effect of PIP on Bmal1-mediated glucose metabolism was weakened, indicating that PIP alleviated Bmal1-involved insulin resistance and circadian misalignment in a Trpv1-dependent manner in HepG2 cells.


Assuntos
Alcaloides , Transtornos do Metabolismo de Glucose , Humanos , Células Hep G2 , Alcaloides/farmacologia , Glucose/metabolismo
3.
J Agric Food Chem ; 71(49): 19207-19220, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37943254

RESUMO

Garlic has been used worldwide as a spice due to its pungent taste and flavor-enhancing properties. As a main biologically active component of the freshly crushed garlic extracts, allicin (diallyl thiosulfinate) is converted from alliin by alliinase upon damaging the garlic clove, which has been reported to have many potent beneficial biological functions. In this work, allicin formation, stability, bioavailability, and metabolism process are examined and summarized. The biological functions of allicin and potential underlying mechanisms are reviewed and discussed, including antioxidation, anti-inflammation, antidiabetic, cardioprotective, antineurodegenerative, antitumor, and antiobesity effects. Novel delivery systems of allicin with enhanced stability, encapsulation efficiency, and bioavailability are also evaluated, such as nanoparticles, gels, liposomes, and micelles. This study could provide a comprehensive understanding of the physiochemical properties and health benefits of allicin, with great potential for further applications in the food and nutraceutical industries.


Assuntos
Dissulfetos , Alho , Disponibilidade Biológica , Suplementos Nutricionais , Alho/química , Ácidos Sulfínicos/química , Antioxidantes/metabolismo
4.
Food Funct ; 14(13): 6248-6261, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37350159

RESUMO

This study investigated the preventive effect of 5-demethylnobiletin (5DN), a natural polymethoxyflavone found mainly in citrus fruits, on dextran sulfate sodium (DSS)-induced colitis in mice and explored its potential mechanisms. Our results indicated that dietary 5DN (0.05% w/w in diet) could alleviate colitis symptoms in DSS-treated mice by preventing body weight loss, reducing the disease activity index, decreasing the colon weight to colon length ratio, and lessening colon tissue damage. Additionally, 5DN inhibited the inflammatory response in colitis mice through decreasing the production of inflammatory cytokines. Immunohistochemical analysis revealed that 5DN could reverse the DSS-induced decrease in the expression of claudin-1 and ZO-1 to improve the intestinal barrier function. Furthermore, 5DN altered gut microbiota dysbiosis in DSS-treated mice via up-regulating the level of probiotics (Roseburia) and down-regulating the level of pathogenic bacteria (Clostridium, Parabacteroides, and Sutterella). Taken together, these data provided a solid scientific basis for utilizing 5DN as a therapeutic candidate in colitis and related diseases.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Camundongos , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Citocinas/metabolismo , Imunidade , Dieta , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
J Sci Food Agric ; 103(12): 5717-5726, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37128129

RESUMO

BACKGROUND: Oleogels have been extensively explored as fat substitutes with no trans fatty acids and low saturated fatty acids in recent years as a result of increased health problems found to be related to the intake of trans and saturated fatty acids. RESULTS: Herein, high internal phase emulsion (HIPE) stabilized by rice bran protein (RBP) was prepared and further utilized as a template for preparation of RBP oleogels. RBP HIPE with the strongest rheological properties was obtained at pH 5.0 as a result of appropriate structural deformation, surface charge and a high three-phase contact angle at this pH. However, RBP oleogels prepared at pH 9.0 exhibited the highest yield stress after drying process. At this pH, RBP showed higher resistance to deformation caused by water evaporation. This highlighted the importance of structural stability of protein network on rheological properties of the resultant oleogels. Furthermore, with an increase in drying temperature, RBP oleogels exhibited higher yield stress and gel strength because water was better removed as a result of an enhanced capability to overcome the capillary pressure of emulsion. CONCLUSION: The present study further revealed the structure-activity relationship between protein, HIPE and oleogel, and also provided theoretical support for the development of protein-based oleogel. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Oryza/química , Emulsões/química , Ácidos Graxos/química , Água
6.
Food Chem ; 420: 136029, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37037111

RESUMO

In this study, we reported a facile strategy to produce an interfacial crystallized oleogel emulsion for improved thermal stability. The interfacial crystallization of ceramide (non-interfacial active oleogelator) was achieved by addition of a surface active compound, which was demonstrated by interfacial rheology tests and polarized light microscopy. For successfully prepared interfacial crystallized emulsions, smaller particle size was observed when the gelator concentration was lower. However, better thermal stability was achieved when oleogelator concentration was higher than 1 wt%. Results from differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy suggested that the interfacial adsorption of ceramide was due to its co-crystallization with the emulsifier driven by hydrogen bonds formed by multiple sites. It provided appropriate crystallinity and steric repulsion for oleogel emulsions against oil droplet coalescence during heating process. This strategy greatly enriches oleogel emulsion formulations and their potential applications in food products involved with thermal treatment.


Assuntos
Emulsões , Emulsões/química , Temperatura , Cristalização , Reologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Food Funct ; 14(3): 1662-1673, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36691893

RESUMO

Glucose metabolism disorder triggered by a high-energy diet is associated with circadian disruption in the brain, peripheral tissues and gut microbiota. The present study aims to investigate the regulating effects of capsaicin (CAP) on the diet-induced disturbances of glucose homeostasis and gut microbiota in respect of circadian rhythm-related mechanisms. Our results indicated that CAP significantly ameliorated glucose metabolism disorder in mice induced by a high-fat and high-fructose diet (HFFD). The rhythmic expressions of circadian clock genes (Bmal1, Clock, and others) and glucose metabolism-related genes (Pgc-1α, Glut2, G6pc, and Pepck) in the liver disrupted by an abnormal diet were also recovered by CAP. Microbial studies using 16S rDNA sequencing revealed that CAP modulated the structure and composition of gut microbiota and improved the circadian oscillations of Firmicutes and Bacteroidetes at the phylum level and Allobaculum, Bacteroides, Bifidobacterium, and Alistipes at the genus level. Correlation analysis indicated that a close correlation existed between intestinal microbiota, hepatic circadian gene expressions and the level of glucose metabolism-related factors, indicating that CAP could alleviate HFFD-induced disturbances of glucose metabolism and gut microbiota associated with circadian clock related mechanisms.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Transtornos do Metabolismo de Glucose , Animais , Camundongos , Relógios Circadianos/genética , Capsaicina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase , Camundongos Endogâmicos C57BL
8.
Crit Rev Food Sci Nutr ; 63(19): 3634-3652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34657531

RESUMO

Abnormal glucose homeostasis is linked to a variety of metabolic syndromes, such as insulin resistance, obesity, type-2 diabetes mellitus, hypertension and cardiovascular diseases. Maintenance of normal glucose homeostasis is important for the body to keep normal biological functions. As the major bioactive ingredient in chili peppers responsible for the pungent flavor, capsaicin has been reported to effectively improve glucose homeostasis with low cytotoxicity. In this review, the modulating effects of capsaicin on glucose homeostasis in cell models, animal models and human trials are summarized through both TRPV1 dependent and TRPV1 independent pathways. The relevant molecular mechanisms underlying its regulatory effects are also evaluated. Understanding the effects and mechanisms of capsaicin on glucose metabolism could provide theoretical evidence for its application in the food and pharmaceutical industries.


Assuntos
Capsaicina , Capsicum , Animais , Humanos , Capsaicina/farmacologia , Obesidade , Homeostase , Glucose
9.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959723

RESUMO

Interest in the application of dietary bioactive compounds (DBC) in healthcare and pharmaceutical industries has motivated researchers to develop functional delivery systems (FDS) aiming to maximize their bioefficacy. As the direct and indirect health benefiting effects of DBC are acknowledged, traditional design principle of FDS aiming at improving the bioavailability of intact DBC is challenged by the updated one, where the maximized bioefficacy of DBC delivered by FDS will be achieved via rationally absorbed at target sites with proper metabolism pathways. This article briefly summarized the absorption and metabolic fates of orally digested DBC along with their direct and indirect mechanisms to perform health benefiting effects. Current strategies in designing the next generation FDS with an emphasis on their modulation effects on the distribution portion between the upper and lower digestive tract, portal vein and lymphatic absorption, human digestive and gut microbiota enzymatic mediated metabolism were highlighted. Updated research progresses of FDS in adjusting sensory attributes of food end products and inducing synergistic effects rooting from matrix materials and co-delivered cargos were also discussed. Challenges as well as future perspectives concerning the precise nutrition and the critical role of delivery systems in dietary intervention were proposed.

10.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628429

RESUMO

Metabolic disorders are closely associated with the dysregulation of circadian rhythms. Many bioactive components with lipid metabolism-regulating effects have been reported to function through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine (PIP) has been demonstrated to possess anti-obesity bioactivity by affecting hepatic lipid metabolism-related factors. However, whether the circadian clock genes Bmal1 and Clock are involved in the protective effect of PIP against lipid metabolism disorders remains unknown. In this work, oleic acid (OA) induced lipid accumulation in HepG2 cells. The effect of PIP on redox status, mitochondrial functions, and circadian rhythms of core clock genes were evaluated. Results revealed that PIP alleviated circadian desynchrony, ROS overproduction, and mitochondrial dysfunction. A mechanism study showed that PIP could activate the SREBP-1c/PPARγ and AMPK/AKT-mTOR signaling pathways in a Bmal1/Clock-dependent manner in HepG2 cells. These results indicated that Bmal1 and Clock played important roles in the regulating effect of PIP on hepatic lipid homeostasis.


Assuntos
Benzodioxóis , Alcamidas Poli-Insaturadas , Alcaloides , Benzodioxóis/farmacologia , Células Hep G2 , Humanos , Lipídeos , Piperidinas , Alcamidas Poli-Insaturadas/farmacologia
11.
J Agric Food Chem ; 70(3): 794-803, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34964356

RESUMO

As the major component in red chili peppers, capsaicin is useful in the prevention of lipid metabolism disorders. In this study, the attenuation effect of capsaicin on oleic acid (OA)-induced lipid accumulation in HepG2 cells was evaluated with respect to circadian clock gene expressions. Lipid profiles, including triacylglycerols, total cholesterols, high-density lipoproteins, low-density lipoproteins, and aspartate aminotransferase content, were measured using enzymatic assay kits. The mitochondrial membrane potential, cellular redox status, and lipid droplet morphology were also determined using different assay kits and staining methods. The mRNA and protein expressions of core circadian clock genes and major lipometabolism-related factors were assessed using RT-qPCR and western blotting. Results showed that 50 µM capsaicin alleviated the circadian desynchrony and inhibited OA-induced ROS overproduction (from 166.44 ± 12.63% to 119.90 ± 5.43%) and mitochondrial dysfunction (from 0.60 ± 0.08 to 0.83 ± 0.09, represented by the red/green fluorescence ratio) in HepG2 cells. The amelioration effect of capsaicin on OA-induced lipid accumulation was weakened after Bmal1-knockdown, demonstrating that the rhythmic expression of the circadian clock gene is involved in the regulation process of capsaicin in lipid metabolism.


Assuntos
Relógios Circadianos , Capsaicina/farmacologia , Relógios Circadianos/genética , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/genética , Ácido Oleico
12.
Food Funct ; 12(19): 8867-8881, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34528635

RESUMO

As the major naturally occurring alkaloid in pepper with a pungent taste, piperine is known for its beneficial biological functions and therapeutic effects. In this work, the bioavailability and biological activities of piperine were presented and discussed. Novel delivery systems for enhancing the bioavailability of piperine were also reviewed. This study could provide a better understanding of the physiological and biochemical aspects of piperine to be further developed in the food and nutraceutical industries.


Assuntos
Alcaloides/administração & dosagem , Benzodioxóis/administração & dosagem , Suplementos Nutricionais , Piper nigrum , Piperidinas/administração & dosagem , Alcamidas Poli-Insaturadas/administração & dosagem , Alcaloides/farmacocinética , Benzodioxóis/farmacocinética , Disponibilidade Biológica , Humanos , Piperidinas/farmacocinética , Alcamidas Poli-Insaturadas/farmacocinética
13.
Food Funct ; 12(14): 6136-6156, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34057166

RESUMO

The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.


Assuntos
Relógios Circadianos , Dieta/métodos , Doenças Metabólicas/terapia , Obesidade/terapia , Compostos Fitoquímicos/administração & dosagem , Animais , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Flavonoides/administração & dosagem , Microbioma Gastrointestinal , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/prevenção & controle , Obesidade/metabolismo , Obesidade/prevenção & controle , Polifenóis/administração & dosagem
14.
Food Res Int ; 137: 109410, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233097

RESUMO

Gut microbiome has been proven to be involved in the development of type 2 diabetes (T2D). Additionally, increasing evidence showed that the composition of gut microbiome is highly associated with the outcome of T2D therapy. Previously we demonstrated that feruloylated oligosaccharides (FOs) and ferulic acid (FA) alleviated diabetic syndrome in rats, but the detailed mechanism has not been explored yet. In this study we strived to characterize how FOs and FA altered the gut microbiome and related metabolome in diabetic rats by using high-throughput sequencing of 16S rRNA and gas chromatography (GC). Our results showed that FOs reduced the abundance of Lactobacillus, Ruminococcus, Oscillibacter, and Desulfovibrio, but increased the abundance of Akkermansia, Phascolarctobacterium and Turicibacter. The structure of gut microbiome in FOs treated rats was similar with healthy rats rather than diabetic rats. Likewise, FA decreased the portion of Lactobacillus, Ruminococcus, but promoted the growth of Bacteroides, Blautia, Faecalibacterium, Parabacteroides and Phascolarctobacterium. Additionally, the short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), the main bacterial lipid metabolites in gut mediating host glucose metabolism, was dramatically elevated along with FOs and FA treatment. Our findings indicated that FOs and FA attenuated diabetic syndrome in rats most likely by modulating the composition and metabolism of gut microbiome. The study gives new insight into the mechanism underlying the anti-diabetes effect of functional foods as well as facilitates the development of dietary supplements for diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Ácidos Cumáricos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Oligossacarídeos/farmacologia , RNA Ribossômico 16S , Ratos
15.
Carbohydr Polym ; 247: 116742, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829861

RESUMO

Two modified citrus pectins, MCP4 and MCP10, were prepared by UV/H2O2 treatment at pH 4 and pH 10, respectively, and their structures were characterized. MCP10 had a rhamnogalacturonan-I (RG-I) enriched backbone with a high degree of branching (DB ∼61 %) and a low methoxylation degree (24 %). MCP4 had a homogalacturonan enriched backbone with a high degree (46 %) of methoxylation and a low DB (∼41 %) of RG-I branches. MCP10 exhibited a higher anti-inflammatory activity than MCP4 in suppressing the NF-κB expression and the production of pro-inflammatory factors TNF-α and IL-1ß of THP-1 cells stimulated by lipopolysaccharide. MCP10 also showed a stronger inhibitory effect on Caco-2 cell proliferation. The stronger bioactivities of MCP10 may be attributable to the abundant branches and the proper length of terminal galactan residues attached to the RG-I domain.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Peróxido de Hidrogênio/química , Inflamação/tratamento farmacológico , Pectinas/farmacologia , Raios Ultravioleta , Ácidos/química , Álcalis/química , Anti-Inflamatórios/química , Antineoplásicos/química , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Técnicas In Vitro , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Pectinas/química
16.
Food Funct ; 11(9): 7356-7370, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32820787

RESUMO

Obesity and overweight have become serious health problems in the world and are linked to a variety of metabolic disorders. Phytochemicals with a weight-loss effect have been widely studied for the past few decades. Capsaicin is the major bioactive component in red chili peppers with many beneficial functions. Its anti-obesity effects have been evaluated extensively using different model systems, including cell models, animal models and human subjects. In this paper, anti-obesity effects of capsaicin are reviewed and the underlying mechanisms are characterized.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Capsaicina/administração & dosagem , Capsicum/química , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Animais , Humanos , Obesidade/metabolismo , Sobrepeso/metabolismo , Compostos Fitoquímicos/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Food Funct ; 11(4): 2848-2860, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32246759

RESUMO

Capsaicin is the primary bioactive substance in red chili peppers, which produces the pungent flavor. During the past few decades, pharmacological benefits of capsaicin and its underlying mechanisms have been examined extensively. In this paper, major biological efficacies of capsaicin are reviewed, including analgesic, antioxidant, anti-inflammatory, anti-cancer, anti-obesity, cardio-protective, and metabolic modulation effects. Novel delivery systems, such as liposomes, micelles, micro/nano-emulsions, colloidal capsules and solid nanoparticles, for enhancing the oral bioavailability of capsaicin are also evaluated depending on the stability, encapsulation efficiency and biological properties. This review provides a theoretical basis for capsaicin to be further developed into a multi-functional ingredient with health-promoting functions in the nutraceutical industry.


Assuntos
Capsaicina/administração & dosagem , Suplementos Nutricionais , Alimento Funcional , Disponibilidade Biológica , Capsicum , Humanos , Fitoterapia
18.
Int J Biol Macromol ; 152: 223-233, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068060

RESUMO

The impacts of protein nanoparticles on the interfacial distribution of antioxidants and the oxidative stability in Pickering emulsions are attracting increasing research interests. In the present work, the distribution of gallic acid (GA) in zein nanoparticles-stabilized Pickering emulsions (ZPE) was determined by employing a pseudophase kinetic model. The interfacial distribution of GA was found to be favored in ZPEs with higher zein nanoparticle concentration (Czein). Upon increasing Czein, the interfacial loading of nanoparticles (Γ) dominated the modulation of %GAI via hydrogen bonding between zein nanoparticles and GA. The interfacial percentage of GA (%GAI) increased from 28% to 39% as Γ increased from 0.48 to 1.12 mg/m2. In the presence of GA, a direct correlation between Czein or Γ and oxidation stability was recognized, whereas the oxidative stability showed a non-linear dependence on either Czein or Γ in the absence of GA. By excluding antioxidant effects of zein nanoparticles, we found that the %GAI, which was regulated by Γ, took the leading role over the physical barrier effect on the oxidative stability of emulsions. The present work extends our current knowledge on how protein based nanoparticles manipulate the interfacial distribution of antioxidant and then affect the oxidative stability of emulsions.


Assuntos
Antioxidantes/química , Emulsões/química , Ácido Gálico/química , Nanopartículas/química , Fenóis/química , Zeína/química , Cinética , Oxirredução
19.
J Agric Food Chem ; 67(36): 10089-10096, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31423784

RESUMO

Circadian rhythms are closely associated with metabolic homeostasis. Metabolic disorders can be alleviated by many bioactive components through controlling of clock gene expressions. Capsaicin has been demonstrated with many beneficial effects including anti-obesity and anti-insulin resistance activities, yet whether the rhythmic expression of circadian clock genes are involved in the regulation of redox imbalance and glucose metabolism disorder by capsaicin remains unclear. In this work, the insulin resistance was induced in HepG2 cells by treatment of glucosamine. Glucose uptake levels, reactive oxygen species, H2O2 production, and mitochondrial membrane potential (MMP) were measured with/without capsaicin cotreatment. The mRNA and protein expressions of core circadian clock genes were evaluated by RT-qPCR and western blot analysis. Our study revealed that circadian misalignment could be ameliorated by capsaicin. The glucosamine-induced cellular redox imbalance and glucose metabolism disorder were ameliorated by capsaicin in a Bmal1-dependent manner.


Assuntos
Capsaicina/administração & dosagem , Relógios Circadianos/efeitos dos fármacos , Transtornos do Metabolismo de Glucose/tratamento farmacológico , Resistência à Insulina , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/genética , Transtornos do Metabolismo de Glucose/metabolismo , Transtornos do Metabolismo de Glucose/fisiopatologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Insulinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos
20.
J Agric Food Chem ; 67(9): 2476-2489, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30740980

RESUMO

Polymethoxyflavones (PMFs) have been shown to prevent obesity, ameliorate type 2 diabetes, and regulate lipid metabolism in vitro and in vivo. However, little is known about the contribution of 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF) to prevent obesity and regulate lipid metabolism in vivo. We aimed to investigate the potential efficacy of HMF on preventing obesity and hyperlipidemia in rats fed a high-fat diet (HFD) and its underlying mechanisms. Male Sprague-Dawley rats were fed a normal diet or an HFD with or without HMF (0.02%, 0.04% and 0.08%, w/w) for 6 weeks. The supplementation of HMF not only significantly decreased body weight gain (HFD, 336.50 ± 18.84 g; LHMF, 309.43 ± 20.74 g; MHMF, 296.83 ± 13.88 g; HHMF, 265.71 ± 19.09 g; respectively, p < 0.05) and adipose tissues weight ( p < 0.05), but also markedly lowered serum levels of total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol ( p < 0.05) in the sixth week in a dose-dependent manner compared with the HFD group. HMF also significantly alleviated hepatic steatosis in the liver (liver weight g/100 g body weight of HFD, 4.86 ± 0.11%; LHMF, 4.02 ± 0.33%; MHMF, 4.05 ± 0.31%; HHMF, 3.72 ± 0.34%; respectively, p < 0.05). Furthermore, transcriptome analysis and real-time quantitative RT-PCR demonstrated that HMF supplementation markedly downregulated hepatic genes related to adipogenesis transcription and inflammatory responses, and significantly upregulated genes related to fatty acid oxidation and energy expenditure. These results indicated that HMF could effectively prevent obesity and hyperlipidemia by regulation of the expression of lipid metabolism-related and inflammatory response-related genes.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Flavonoides/administração & dosagem , Hiperlipidemias/prevenção & controle , Obesidade/prevenção & controle , Adipogenia/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipidemias/etiologia , Inflamação/genética , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/química , Fígado/metabolismo , Masculino , Obesidade/etiologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...